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scheme (multistage, Runge–Kutta in this case). These
benefits are achieved at a relatively low computationalImplicit residual smoothing operators for accelerating the con-

vergence of explicit, multistage, artificial compressibility algo- overhead (typically less than 10% of the total CPU time
rithms are developed using ideas from pressure-based methods. per iteration) since only inversions of scalar tridiagonal
The velocity derivatives in the continuity equation and the pressure matrices are required.
gradient terms in the momentum equations are discretized in

The objective of this paper is to exploit certain propertiestime implicitly. The discrete system of equations is linearized in
of the incompressible flow equations to develop a residualtime producing a block implicit operator which is approximately

factorized and diagonalized via a similarity transformation. The smoothing operator, specifically tailored for explicit,
so-derived diagonal operator depends only on the metrics of the multistage AC algorithms. Such an operator must exhibit
geometric transformation and can, thus, be implemented in an the simplicity and computational efficiency of the standard
efficient and straightforward manner. It is combined with the

IRS operator and further enhance the damping of high-standard implicit residual smoothing operator and incorporated
frequency errors, so that it can be used as an effectivein a four-stage Runge–Kutta algorithm also enhanced with local

time-stepping and multigrid acceleration. Linear stability analysis multigrid smoother for incompressible flow solutions. To
for the three-dimensional Navier–Stokes equations and calcula- construct such an operator, we explore the possibility of
tions for laminar flows through curved square ducts and pipes combining ideas from pressure-based, or pressure-Poisson
demonstrate the damping properties and efficiency of the pro- (PP), methods with pseudo-compressible formulations.
posed approach particularly on large-aspect ratio, highly skewed

Consider a PP method in which the momentum equationsmeshes. Q 1997 Academic Press
are advanced in time explicitly [1–3]. In such an algorithm
the velocity derivatives in the continuity equation and the
pressure gradient terms in momentum equations are dis-INTRODUCTION
cretized implicitly. The continuity and momentum equa-
tions are subsequently combined to derive a Poisson equa-Explicit, multistage, time-stepping schemes are becom-

ing increasingly popular for simulating incompressible tion for the pressure field at the new time level. Solution
of this equation requires the inversion of a linear Laplacianflows in conjunction with both pressure-based [1–3] and

artificial compressibility (AC) algorithms [4–7]. Such operator, which involves only transformation metrics and
the time increment. Once the pressure equation is solved,schemes are simple to implement and can be readily formu-

lated to take advantage of vector and parallel computers. the new pressure field is used to advance the momentum
equations in time. An explicit AC method [4–7], on theTheir success in modeling complex, three-dimensional

flows is largely due to the second-difference implicit resid- other hand, advances the continuity and momentum equa-
tions in time simultaneously in a coupled fashion. Theual smoothing (IRS) operator which is incorporated in the

basic, explicit, time-stepping scheme [8]. IRS was originally main advantage of coupling the governing equations is that
spatial discretization techniques (scalar and matrix-valuedproposed by Lerat [9] to be used in conjunction with the

Lax and Wendroff scheme and later was extended to dissipation models, flux-difference splitting upwinding,
nonlinear limited schemes, etc.) originally developed formultistage Runge–Kutta time-stepping by Jameson [8]. It

is a differential preconditioner [10] which allows the use the compressible flow equations can be readily extended
to incompressible flows [6, 11, 12]. Coupling also facilitatesof larger Courant numbers, enhances robustness, and im-

proves the overall damping properties of the time-stepping the implementation of boundary conditions using the
method of characteristics [4].procedure. It is, therefore, of crucial importance for design-

ing efficient multigrid algorithms whose performance relies It should be emphasized that, insofar as temporal discret-
ization is concerned, the primary difference between theheavily on the damping properties of the basic iterative
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130 SOTIROPOULOS AND CONSTANTINESCU

PP and AC formulations described above is the treatment are formulated in three-dimensional, generalized curvi-
linear coordinates in an Appendix at the end of thisof the continuity equation. In pressure-based methods, the

continuity equation is always satisfied at the implicit time paper.
level and the pressure field in the momentum equations
plays the role of an implicit Lagrange multiplier [13] which THE GOVERNING EQUATIONS
projects the velocity field into the solenoidal vector space.

For clarity, but without loss of generality, we employIn explicit AC formulations the pressure plays a simi-
the three-dimensional, incompressible Navier–Stokeslar role but at a different time level. As shown in [14],
equations in Cartesian coordinates to demonstrate the der-for instance, an AC formulation may be viewed as a PP
ivation of the proposed method. It should be emphasized,method with the pressure-Poisson equation formulated
however, that the results presented in subsequent sectionsexplicitly.
of this paper have been obtained using the Navier–StokesTo incorporate elements from pressure-based methods
equations in generalized, nonorthogonal curvilinear coor-into coupled, explicit, AC formulations, we propose to
dinates (see the Appendix for the curvilinear coordinateemploy the same temporal discretization for the AC system
version of the proposed method).as the one used in PP formulations. That is, the velocity

The three-dimensional governing equations read inderivatives, in the pseudo-compressible continuity equa-
Cartesian coordinates astion, and the pressure gradient terms, in the momentum

equations are discretized implicitly. Rather than solving
the discrete equations in a segregated fashion, however,

G
­Q
­t

1
­

­x
(E 2 EV) 1

­

­y
(F 2 FV) 1

­

­z
(G 2 GV) 5 0, (1)the resulting system is linearized in time and formulated in

delta form. This procedure produces a linear block implicit
operator—depending only on the metrics of the geometric where
transformation—which is approximately factorized, using
the standard Beam and Warming [15] approach. The re- G 5 diag(b, 1, 1, 1)
sulting implicit operator is combined with standard implicit

Q 5 (p, u, v, w)T
residual smoothing to yield a block, pressure-based resid-
ual smoothing operator for multistage AC algorithms. Im- E 5 (u, u2 1 p, uv, uw)T

plementation of such an operator is considerably more
F 5 (v, uv, v2 1 p, vw)T

(2)

expensive (50% more CPU time per time step), as com-
pared to the standard IRS, due to the need for inverting G 5 (w, uw, vw, w2 1 p)T

block matrices. A computationally more efficient operator
may be derived by diagonalizing the three factors of the

EV 5
1

Re S0,
­u
­x

,
­u
­y

,
­u
­zDT

block operator by invoking similarity transformations of
the Jacobian matrices [16]. The resulting diagonal operator
requires only 20% more work than the standard IRS per FV 5

1
Re S0,

­v
­x

,
­v
­y

,
­v
­zDT

time step, it can be readily implemented in existing
multistage flow solvers and yields significant efficiency
gains on Cartesian and highly skewed, uniform, and GV 5

1
Re S0,

­w
­x

,
­w
­y

,
­w
­zDT.

stretched computational meshes. Depending on the spatial
discretization of the convective terms, both central and
upwind residual smoothing operators can be designed us- In the above equations, b is a positive constant, p, u, v,
ing the proposed approach. and w denote the pressure and velocity components,

In what follows, we first present the governing equations respectively, and Re is the Reynolds number. Note that
in Cartesian coordinates and outline an approach for incor- setting b 5 0 in Eq. (1) produces the incompressible
porating ideas from pressure-based methods in AC algo- Navier–Stokes equations, in the form used to derive
rithms. Based on this approach, we develop block and pressure-based algorithms, while b ? 0 corresponds to the
diagonal pressure-based smoothing operators for explicit, pseudo-compressible system of equations which is solved
Runge–Kutta, time-stepping schemes. The stability char- in artificial-compressibility formulations.
acteristics of the proposed operators are investigated by
employing vector stability analysis for the three-dimen- A PRESSURE-BASED ARTIFICIAL
sional Navier–Stokes equations. The efficiency of the pro- COMPRESSIBILITY ALGORITHM
posed operators is evaluated by applying them to calculate
three-dimensional laminar flows through curved ducts and In this section we outline a general procedure for com-

bining ideas from pressure-based methods with explicitpipes. The governing equations and the proposed method
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AC algorithms to derive a ‘‘pressure-based’’ AC method. pressure-based formulation is the implicit temporal discret-
ization of the continuity equation and the pressure gradientTo facilitate our discussion let us split the convective flux

vectors in Eq. (1) into linear and nonlinear parts, terms in the momentum equations. In this case, the gov-
erning equations need to be solved in a segregated fashion.
The momentum equations are substituted in the continuityE 5 EL 1 EN , F 5 FL 1 FN , G 5 GL 1 GN , (3)
equation to derive a Poisson equation which is solved to
obtain the pressure at the n 1 1 time level. The resultingwhere
pressure is subsequently employed to update the velocities
using the momentum equations.EL 5 (u, p, 0, 0)T, EN 5 (0, u2, uv, uw)T

Here we propose to combine the two approaches so
FL 5 (v, 0, p, 0)T, FN 5 (0, uv, v2, vw)T (4)

that the implicit treatment of the pressure and velocity-
divergence terms, in pressure-based methods, and theGL 5 (w, 0, 0, p)T, GN 5 (0, uw, vw, w2)T.
coupled solution of the governing equations, in AC meth-
ods, are preserved. This can be accomplished by choosingThat is, the EL, FL, and GL vectors contain the velocity

terms in the continuity equation and the pressure gradient b 5 1 (i.e., G 5 I, where I is the identity matrix) and setting
k 5 n 1 1. Upon linearization, Eq. (5) reads asterms in the momentum equations, while the EN , FN , and

GN vectors contain the remaining nonlinear convective
terms. As discussed below, this splitting facilitates the
unified formulation of pressure-based and artificial com- FI 1 Dt S ­

­x
A 1

­

­y
B 1

­

­z
CDG DQ 5 2DtR(Qn), (6)

pressibility algorithms. It was first introduced by Merkle
et al. [17] who compared a PISO-type pressure-based
method with density-based algorithms. where R is the residual vector,

By employing a simple, one-stage, Euler-type, temporal
integration scheme and incorporating Eqs. (3), Eq. (1) can
be discretized in time as R(Qn) 5 F ­

­x
(E 2 EV) 1

­

­y
(F 2 FV)

(7)
G

DQ
Dt

1
­

­x
(E k

L 1 E n
N ) 1

­

­y
(F k

L 1 F n
N )

(5) 1
­

­z
(G 2 GV)Gn

,

1
­

­z
(G k

L 1 G n
N ) 5 S­EV

­x
1

­FV

­y
1

­GV

­z Dn

,
and A, B, and C are Jacobian matrices:

where

DQ 5 Qn11 2 Qn,
A 5

­EL

­Q
5 1

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0
2 ,

n denotes the time level and k 5 n, or n 1 1, depending
on the approach employed to integrate Eq. (5) in time. It
should be noted that the Euler temporal integration
scheme employed in Eq. (5) serves only to facilitate the
development and presentation of the main ideas of this
work. Our ultimate objective, which is pursued in a subse- B 5

­FL

­Q
5 1

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0
2 , (8)

quent section, is to implement these ideas in conjunction
with multistage, Runge–Kutta temporal integration
schemes.

Equation (5) may represent either pressure-based or
artificial compressibility formulations. Choosing b 5 1 (or,
in general, b . 0) and k 5 n, for example, produces the C 5

­GL

­Q
5 1

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0
2 .

standard explicit AC method in which the continuity and
momentum equations are coupled and advanced in time
simultaneously. On the other hand, selecting b 5 0 and
k 5 n 1 1 produces an ‘‘explicit’’ pressure-based formula-
tion—the term ‘‘explicit’’ referring herein only to the Equation (6) can be factorized using the standard Beam

and Warming [15] method asconvective and viscous terms, as the main feature of any
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FI 1 Dt
­

­x
AGFI 1 Dt

­

­y
BGFI 1 Dt

­

­z
CG DQ

(9)
5 2DtR(Qn).

N 51
0 0

1
Ï2

1
Ï2

21 0 0 0

0 0
1

Ï2
2

1
Ï2

0 21 0 0

2 (11)

Equation (9) appears similar to standard implicit, approxi-
mate-factorization AC methods (see, for example, [18]).
The main difference between the present formulation and
such methods is obviously the fact that the operator in the
left-hand side of Eq. (9) is linear, since we have treated
implicitly only the divergence and pressure gradient terms.

The three factors in the left-hand side of Eq. (9) are
block matrices and their inversion would require significant P 51

0 0
1

Ï2
1

Ï2

21 0 0 0

0 1 0 0

0 0
1

Ï2
2

1
Ï2

2 .
computational resources. To remedy this situation, we note
that the A, B, and C Jacobians have real eigenvalues
(l1,2 5 0, l3 5 1, l4 5 21) and linearly independent eigen-
vectors and can, thus, be diagonalized via a similarity trans-
formation [16]. It is also rather interesting to note that the

All terms in the left-hand side of Eq. (10) are constant—intwo nonzero eigenvalues are of opposite sign and equal
generalized curvilinear coordinates these terms involve theabsolute value. This indicates that every point in the solu-
metrics of the geometric transformation (see Appendix)—tion domain is equally influenced by upstream and down-
and can, thus, be computed once and stored. Furthermore,stream traveling waves. This is consistent with the elliptic
solution of Eq. (10) requires inversions of scalar, tri-character of the pressure gradient terms and continuity
diagonal matrices.equation which were discretized implicitly. This observa-

Finally, it should be noted that Eq. (10) is exactly equiva-tion further underscores the relation between the proposed
lent to Eq. (9), only on Cartesian, uniformly spaced meshes.formulation and pressure-based methods whose elliptic
For stretched grids (see Eq. (A.11) in the Appendix),character is associated with the implicit solution of the
Eq. (10) is only an approximation to Eq. (9) as the modalPoisson equation for the pressure field.
matrices need to be locally frozen in space in order toBy implementing the similarity transformation of A, B,
factor them out of the spatial derivatives. The effect of thisand C in Eq. (9), A 5 M21LA M, B 5 N21LB N, and
approximation on the efficiency of the proposed method onC 5 P21LC P, the diagonal algorithm
curvilinear grids is discussed in more detail in the ‘‘Results
and Discussion’’ section of this paper.

M FI 1 Dt
­

­x
LAGM21N FI 1 Dt

­

­y
LBG

(10) EXTENSION TO MULTISTAGE AC ALGORITHMS

N21P FI 1 Dt
­

­z
LCG P21DQ 5 2DtR(Qn) To facilitate our subsequent discussion, let us start by

presenting the standard explicit, four-stage, Runge–Kutta
procedure, enhanced with IRS, as applied to Eq. (1) (for

is obtained, where LA 5 LB 5 LC 5 diag(0, 0, 1, 21), and m 5 1 to 4),
M, N, and P are the modal matrices of the A, B, and C
Jacobian matrices, respectively, given by

Q(m11) 5 Qn 2 DtamI21R(Q(m)), (12)

where am are the Runge–Kutta coefficients and I is the
standard IRS operator defined as

I( ) 5 S1 2 «x
­2

­x2DS1 2 «y
­2

­y2DS1 2 «z
­2

­z2D ( ), (13)M 51
0 0

1
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1
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1
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2

1
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1
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1
Ï2

0 0

1
Ï2

2
1

Ï2
0 0

2 where «x , «y , and «z are positive constants of order one.
Following the ideas developed in the previous section,

a pressure-based Runge–Kutta scheme may be constructed
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by adopting the four-stage, temporal discretization of with
Eq. (1) (for m 5 1, 4),

Ix
B( ) 5 FI 1 am Dt S ­

­x
A 2 «x r(A)I

­2

­x2DG ( ) (19)
Q(m11) 5 Qn 2 Dtam H ­

­x
(E (m11)

L 1 E (m)
N )

(14)
and

1 ? ? ? 2
­E (m)

V

­x
2 ? ? ?J ,

ID( ) 5 MIx
D M21NIy

D N21PIz
D P21( ) (20)

where for clarity only x-direction terms are shown. Upon
withlinearization and approximate factorization of the resulting

implicit operator, the above equation reads

Ix
D( ) 5 FI 1 am Dt S ­

­x
LA 2 «x r(A)I

­2

­x2DG ( ), (21)FI 1 am Dt
­

­x
AGFI 1 am Dt

­

­y
BGFI 1 am Dt

­

­z
CG (15)

where r(A) is the spectral radius of A included in Eqs. (19)DQ(m) 5 2(Q(m) 2 Qn) 2 DtamR(Q(m)),
and (21) to scale the second-order dissipative derivatives
proportionally to the convective-like terms. Although in

where Cartesian coordinates the spectral radii of all three Jacob-
ian matrices equal unity, in generalized curvilinear coordi-

DQ(m) 5 Q(m11) 2 Q(m). (16) nates they depend on the contravariant metric tensor (see
the Appendix) and, thus, need to be included for proper
scaling. This eigenvalue scaling is similar to that used forEquation (15) is a pressure-based, Runge–Kutta AC algo-
constructing explicit, second- and/or fourth-difference arti-rithm whose implementation requires the inversion of
ficial dissipation terms for stabilizing central-differencingblock matrices. A computationally efficient, diagonal ver-
schemes [19].sion of Eq. (15)—see Eq. (10)—may be formulated as

The pressure-based residual smoothing operators given
in Eqs. (18) and (20) may be incorporated in the multistage

M FI 1 am Dt
­

­x
LAGM21N FI 1 am Dt

­

­y
LBG algorithm (for m 5 1 to 4)

IDQ(m) 5 2DtamR(Q(m)) 2 (Q(m) 2 Qn), (22)
N 21P FI 1 am Dt

­

­z
LCG P21 DQ(m) (17)

where I ; IB for a block algorithm and I ; ID for a
5 2(Q(m) 2 Qn) 2 DtamR(Q(m)),

diagonal algorithm. Relative to the standard multistage
algorithm, Eqs. (12) and (13), implementing operators IB

where the modal matrices M, N, and P are given by or ID in Eq. (22) increases the CPU time per time step
Eqs. (11). by approximately 50% and 20%, respectively. The subse-

In general, attempts to employ either the block quently presented results indicate that both operators re-
(Eq. (15)) or the diagonal (Eq. (17)) ‘‘pressure-based’’ sult in significant convergence acceleration in terms of the
algorithms were not successful as no converged solutions number of time steps. In most cases, however, the block
could be obtained—except for calculations carried out on operator requires approximately the same CPU time as the
orthogonal, uniform meshes where both algorithms work standard algorithm and, therefore, is not a computationally
well. This should be attributed to the fact that the A, B, efficient alternative. Furthermore, it is quite cumbersome
and C matrices have two zero eigenvalues (see also to incorporate in an existing Runge–Kutta flow solver as
Eqs. (8)). Thus, no implicit smoothing is applied to two of it requires the inversion of block tridiagonal matrices. The
the four governing equations which results in numerical diagonal operator, on the other hand, is shown to be very
instability. For that reason, we propose to combine the efficient and can be implemented in existing Runge–Kutta
pressure-based implicit operators with the standard IRS AC flow solvers with relatively minimal additional pro-
operator (Eq. (13)) to derive block, IB , and diagonal, ID , gramming work. In the following sections we will pursue
smoothing operators as both algorithms in order to compare the performance of

the block and diagonal operators and investigate the effects
IB( ) 5 Ix

B Iy
B Iz

B( ) (18) of the spatial linearization we adopted in deriving Eq. (20).
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Spatial Discretization Boundary Conditions

For the curved duct and pipe geometries considered inThe spatial derivatives in the residual vector, Eq. (7),
are discretized by employing: (i) second-order accurate, this work, boundary conditions need to be specified at

inlet, outlet, solid wall, and plane-of-symmetry boundaries.three-point central, finite differencing for the viscous
terms; (ii) central or upwind differencing for the convective Dirichlet conditions are imposed for the three velocity

components at the inlet boundary and on solid walls (no-terms. When central differencing is employed for the con-
vective terms, third-order, fourth-difference artificial dissi- slip, no-flux). At the outflow boundary the velocity compo-

nents are obtained by linear extrapolation from the interiorpation terms are explicitly added in the right-hand side of
Eq. (7). These terms are scaled using the nonisotropic nodes, a treatment which is equivalent to setting the diffu-

sion terms in the streamwise direction to zero. On a plane-eigenvalue scaling procedure, suitable for large-aspect-ra-
tio meshes, proposed by Martinelli [19]. Upwind approxi- of-symmetry boundary, the normal velocity component is

set to zero while the tangential components are computedmations of the convective terms, on the other hand, are
constructed by employing flux-difference splitting. In the using Neumann (zero normal derivative) symmetry condi-

tions. The pressure at all boundaries of the computationalpresent study a second-order accurate upwind scheme is
employed. The details of the central and upwind discretiza- domain is computed via linear extrapolation, except, of

course, the plane-of-symmetry where its normal derivativetion procedures can be found in [6].
The convective-like terms in the left-hand side of is set to zero. The various types of boundary conditions

can be formulated in a unified fashion asEqs. (9) (or (15)) and (10) (or (17)) are discretized, de-
pending on the discretization of the convective terms in
the right-hand side, using either central or upwind dif- DQN 5 Sa DQN61 1 Sb DQN62 , (23)
ferencing. Upwind approximations for these terms are
constructed by employing a straightforward flux-splitting

where Sa and Sb are diagonal coefficient matrices, whose
procedure since, unlike the E, F, and G flux vectors (see

entries depend on the type of boundary under consider-
Eq. (2)), the EL, FL, and GL flux vectors (see Eqs. (4))

ation, and N denotes a boundary node. For a z 5 constant
are homogenous. Therefore, they can be readily split

plane-of-symmetry boundary, for example, Sa 5 diag(Sd, Sd,
into positive and negative parts by splitting the eigenvalue

Sd, 0) and Sb 5 2diag(Ad, Ad, Ad, 0).
matrices LA, LB , and LC—for example, LA 5 L1

A 1
The procedure adopted for implementing the boundary

L2
A, where L1

A 5 diag(0, 0, 1, 0) and L2
A 5 diag(0, 0,

conditions is crucial for the success of the pressure-based
0, 21)—and by defining positive and negative Jacobian

residual smoothing operator, particularly in nonorthogo-
matrices as A6 5 M21L6

AM (see the Appendix for expres-
nal, highly skewed meshes. For the block algorithm,

sions in generalized curvilinear coordinates). It should
Eq. (18), boundary conditions may be implemented implic-

be noted that, regardless of the order of accuracy of
itly in a straightforward manner, similar to that used in

the upwind scheme employed in the right-hand side,
Beam and Warming type methods [15]. Correct treatment

first-order accurate upwinding is always used for the left-
of the boundary conditions is somewhat more involved,

hand-side terms in order to preserve the tridiagonal
however, when using the diagonal algorithm (Eq. (20)).

structure of the matrices to be inverted. Obviously such
The procedures for implementing boundary conditions for

an approximation has no effect on the accuracy of the
both algorithms are described below.

steady-state solution as the left-hand side is always driven
to zero at convergence. BLOCK ALGORITHM. The block operator, Eq. (18), is

inverted in three successive steps:
Multigrid Acceleration

Ix
B DQ* 5 R(m) (24a)The standard and proposed residual smoothing opera-

tors are implemented in a four-stage, Runge–Kutta algo-
Iy

B DQ** 5 DQ* (24b)
rithm—with coefficients am 5 Af, Ad, As, 1, for m 5 1, 2, 3, 4,
respectively—enhanced with multigrid acceleration [20] Iz

B DQ(m) 5 DQ**. (24c)
and local time stepping. The multigrid method employs a
V-cycle algorithm with three grid levels and has both full- Let us consider the x-direction sweep and assume that a
and semi-coarsening capabilities [6, 7]. One iteration is boundary of the computational domain is located at i 5
performed on the finest mesh, and two and three iterations im. At the node adjacent to i 5 im, Eq. (24a), discretized
are performed on the two coarser meshes, respectively. with a three-point differencing scheme, reads
During prolongation, the coarse grid residuals are
smoothed using the standard constant-coefficient IRS op-

C2
im21 DQ*im22 1 Co

im21 DQ*im21 1 C1
im21 DQ*im 5 R(m), (25)erator (Eq. (13)).
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where C2, Co, and C1 are coefficient matrices depending where the C6,o
i coefficients depend on the spatial discretiza-

tion scheme. As discussed above, the general extrapolationon the spatial discretization scheme. Boundary conditions
in the above equation may be implemented implicitly by procedure, Eq. (23), is applicable only to DQ*im but not to

DQ*im . To formulate boundary conditions for the latter, weexpressing DQ*im in terms of DQ*im21 and DQ*im22 , using
Eq. (23) multiply Eq. (23)—written in terms of DQ*im—from the

left with M21
im , and using Eq. (27b) we obtain

(C2
im21 1 C1

im21 Sb) DQ*im22

(26) DQ*im 5 M21
im Sa DQ*im21 1 M21

im Sb DQ*im22 . (29)
1 (Co

im21 1 C1
im21 Sa) DQ*im21 5 R(m).

The corrections that appear in the right-hand side of this
equation are approximated explicitly and set equal to theSimilar procedures may be adopted for the sweeps in the
residuals at the corresponding nodes, i.e., DQ*i 5 R(m)

i ,y- and z-directions.
thus, yielding

DIAGONAL ALGORITHM. The diagonal residual
smoothing operator, Eq. (20), is inverted in the follow- DQ*im 5 M21

im SaR(m)
im21 1 M21

im SbR(m)
im22 . (30)

ing steps:

This relation provides a consistent explicit boundary condi-
Ix

D DQ* 5 M21R(m) (27a) tion for DQ*im . Incorporating Eq. (30) into Eq. (28), the
near-boundary form of the x-operator is obtained:DQ* 5 M DQ* (27b)

Iy
D DQ** 5 N21 DQ* (27c)

C2
im21 DQ*im22 1 Co

im21 DQ*im21 5 M21
im21R(m)

im21

(31)DQ** 5 N DQ** (27d)
2 Co

im21(M21
imSaR(m)

im21 1 M21
imSbR(m)

im22).
Iz

D DQ(m) 5 P21 DQ** (27e)

Similar procedures are adopted for the y- and z-direc-DQ(m) 5 P DQ(m). (27f)
tion operators.

Inversion of the diagonal operators in Eqs. (a), (c), and
LINEAR STABILITY ANALYSIS(e) above requires boundary conditions for DQ*, DQ**,

and DQ(m), respectively. Unlike the corresponding vari- To investigate the effect of the proposed residual
ables without overbars in the above equations—whose smoothing operators on the damping properties of the
components represent temporal changes in pressure multistage iterative algorithm, we employ Von Neumann
and velocity—the DQ variables are by definition (see vector stability analysis for the three-dimensional Navier–
Eqs. (27b), (27d), and (27e) above) linear combinations of Stokes equations. The equations of motion are linearized
physical flow quantities. That is, Eq. (23) is not applicable in time and space and transformed in Fourier space to
in terms of DQ and, therefore, boundary conditions cannot derive an equation that relates the amplitude of the error
be applied in a similar fashion as discussed above for the at the ‘‘n 1 1’’ time step to that at the ‘‘n’’ time step,
block algorithm. A simple solution is to set DQ*, DQ**, Q̂n11 5 GQ̂n, where Q̂ is the error amplitude and G
and DQ(m) equal to zero at all boundary nodes. This explicit is the amplification matrix (4 3 4 matrix for the three-
implementation, however, was found to work well only on dimensional Navier–Stokes equations). The stability char-
orthogonal meshes (the square duct case discussed subse- acteristics of the system of equations may be determined
quently) but resulted in dramatic deterioration of the con- by examining the magnitude of the eigenvalues of G for the
vergence rate on highly skewed meshes (the pipe bend entire wave number range. Unstable behavior is associated
case discussed below). A more rigorous, albeit also explicit, with eigenvalues larger than unity. Eigenvalues less than
boundary condition implementation procedure may be for- unity, but very close to it, indicate very sluggish conver-
mulated as follows: gence rates, while eigenvalues approaching zero indicate

Consider the x-sweep operator (Eq. (27a)) near the rapid error damping and, thus, fast convergence.
boundary i 5 im, For clarity, but without loss of generality, the stability

analysis presented below is carried out by focusing only
on the magnitude of the largest eigenvalue of G—i.e.,C2

im21 DQ*im22 1 Co
im21 DQ*im21 1 C1

im21 DQ*im
(28) the spectral radius of G—which will be denoted as the

5 M21
im21R(m)

im21 , amplification factor g of the numerical scheme. For the
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standard IRS and proposed multistage procedures outlined operator should be very effective in damping high fre-
quency errors, thus providing an excellent smoother for aabove, g is a function of
multigrid procedure. The effect of the proposed algorithm
is even more pronounced in Figs. 3 and 4 which compareg 5 g(gxi

; sxi
; Vxi

; am ; «xi
; ui ) for i 5 1, 2, 3; m 5 1 to 4,

the stability characteristics of two residual smoothing oper-
ators for a large-aspect-ratio case (AR 5 1000). For both
spatial discretization schemes, the pressure-based operatorwhere, gxi

are the phase angles along each spatial direc-
tion, sxi

5 Dt/Dxi , Vxi
is the Von Neumann number consistently produces substantially smaller amplification

factors everywhere and particularly in the high frequency(;Dt/(Dx2
i Re)), «xi

are the standard implicit residual
smoothing coefficients («x , «y , and «z ) and ui are the range of phase angles. Obviously this is a very encouraging

result as it suggests that the proposed approach may be aCartesian velocity components (u, v, and w). When central-
differencing is employed for discretizing the convective powerful tool for accelerating the convergence on large-

aspect-ratio meshes which are necessary for simulating tur-terms g also depends on «, the coefficient of the explicitly
added artificial dissipation terms. For all cases studied be- bulent flows of practical interest. The subsequently pre-

sented computations confirm most of the trends observedlow, g is evaluated numerically and its contours are plot-
ted—for given sxi

, Vxi
, am , «xi

, and ui—at gx3
5 const in Figs. 1 to 4.

planes in terms of gx1
and gx2

.
It should be noted that since the Von Neumann method TEST CASES AND COMPUTATIONAL DETAILS

is only applicable to linear equations, the block and diago-
nal residual smoothing operators developed herein should To investigate the relative efficiency of the standard and

proposed residual smoothing operators, we apply them tobe expected to exhibit identical stability characteristics.
Also, our subsequent analysis is restricted to the single- calculate laminar flows through strongly curved 908 bends

of square and circular cross section. As mentioned abovegrid version of the various algorithms and, thus, does not
account for the effects of multigrid acceleration. This not- these calculations are carried out using the three-dimen-

sional Navier–Stokes equations in generalized, curvilinearwithstanding, however, the performance of the proposed
residual smoothing operator in a multigrid framework may coordinates (see Appendix). For the square duct case, the

Reynolds number, based on hydraulic diameter and bulkbe readily extrapolated from a single grid stability analysis
by focusing our attention at the high frequency end of the velocity, is Re 5 790 and fully developed flow is specified

at the entrance of the bend. For the pipe bend, on thespectrum which is the only relevant frequency range for
multigrid algorithms. other hand, plug flow is specified at the entrance of the

bend and Re 5 1100.In what follows, we compare the stability characteristics
of the standard IRS multistage algorithm, Eq. (12), with Figure 5 shows typical plane-of-symmetry and cross-sec-

tional views of the computational grid for the duct andthose of the proposed algorithm, Eq. (18) or (20). For
each algorithm, we investigate the effect of the spatial pipe geometries. Two meshes are employed to discretize

the duct geometry: a uniform mesh with 61 3 21 3 13discretization scheme by considering both central and
upwind second-order accurate discretizations of the nodes (case 1a), and a stretched mesh (minimum near-wall

spacing 8 3 1024) with 61 3 41 3 21 nodes (case 1b) inconvective terms. We also examine the effect of cell aspect
ratio AR—defined as AR 5 max(lx2

/lx1
, lx3

/lx1
), where the streamwise, radial, and normal directions, respectively.

lxi
; ri/Dxi and ri (; uuiu 1 Ïu2

i 1 b) denote the spectral The pipe bend is discretized using 69 3 41 3 21 grid nodes
(case 2) with minimum near-wall spacing 1 3 1024. It shouldradii of the convective Jacobian matrices (r1 , for example,

is the spectral radius of ­E/­Q)—by comparing the relative be noted that the cross-sectional mesh topology for the
pipe bend (see Fig. 5) produces highly-skewed grid linesbehavior of the two algorithms for AR 5 1 and 1000. For

all cases, the Courant and Von Neumann numbers, as near the corners of the cross section. This topology was
specifically selected to investigate the combined effects ofwell as the residual smoothing coefficients were selected

to optimize the damping properties of each algorithm. mesh skewness and aspect ratio on the robustness and
performance of the standard and proposed smoothing op-Figures 1 (central differencing) and 2 (upwind differenc-

ing) compare the stability characteristics of the standard erators.
For all cases, calculations were carried out with the stan-and proposed residual smoothing operators for the case

of uniform mesh (AR 5 1). It is seen that, regardless of dard (Eq. 13)) and the block and diagonal versions of
the proposed pressure-based (Eqs. (18) and (20)) residualthe spatial discretization scheme employed, the proposed

operator yields substantially smaller, compared to the stan- smoothing operators. Each algorithm was employed in
conjunction with both central (IRS C, PBB C, anddard IRS operator, values for the amplification factor in

the vicinity of gx 5 gy 5 f for all four gz 5 constant PBD C will denote the standard and pressure-based block
and diagonal algorithms, respectively) with explicitlysections shown. This trend suggests that the pressure-based
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FIG. 1. Linear stability analysis (central differencing; aspect ratio AR 5 1; Re 5 103). Pressure-based smoothing (CFL 5 2.5, «x 5 «y 5 «z 5

0.55, « 5 0.06). Standard smoothing (CFL 5 1.5, «x 5 «y 5 «z 5 0.35, « 5 0.06).

added artificial dissipation, and second-order accurate flux- tive terms, the artificial dissipation coefficient was set equal
to 0.004.difference splitting upwind differencing (IRS U, PBB U,

and PBD U)—only a representative sample of these calcu- To facilitate our subsequent discussion, the relative effi-
ciency of the various algorithms is assessed, based on thelations, carefully selected to demonstrate the main findings

of our work without confusing the reader, are shown in work they require to reduce the residuals by four orders
of magnitude (corresponding residual level of the orderthe subsequent figures. Case 1a is calculated with both the

single-grid and multigrid versions of the various algorithms 1025). The CPU unit in all subsequently presented figures
is defined as the CPU time required for one single gridwhile all other cases are calculated using only multigrid ac-

celeration. iteration with the standard IRS algorithm. That is, the
horizontal axis in these figures has been scaled to provideThe Courant–Friedrich–Lewis (CFL) number and

smoothing coefficients for all cases were optimized via a direct assessment of the relative efficiency of the various
algorithms in terms of actual CPU time per time step. Allnumerical experimentation with guidance from linear sta-

bility analysis. For the standard IRS algorithm the opti- calculations were carried out on a HP-750 workstation
using single-precision arithmetic.mum CFL number was found to be CFL 5 6.0, regardless

of the spatial discretization scheme employed. The opti-
mum CFL numbers for the block and diagonal pressure- RESULTS AND DISCUSSION
based operators, on the other hand, were found to be
significantly smaller, ranging between CFL 5 2 to 3.5. For Figures 6 and 7 compare the performance of the various

algorithms for the uniform grid case (case 1a). Figure 6all cases, the optimal residual smoothing coefficients are
of order one (ranging between 0.5 to 3.0, depending on shows the convergence histories for the IRS C, PBB C,

and PBD C operators employed in conjunction with thethe grid stretching and skewness). For the cases where
central differencing was employed to discretize the convec- single-grid version of the multistage iterative procedure.
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FIG. 2. Linear stability analysis (second-order upwind; aspect ratio AR 5 1; Re 5 103). Pressure-based smoothing (CFL 5 3.0, «x 5 «y 5

«z 5 0.25). Standard smoothing (CFL 5 1.5, «x 5 «y 5 «z 5 0.8).

IRS C and PBB C are seen to converge at almost the tory convergence exhibited by the PBB algorithm are not
entirely clear. One possible reason could be the differentsame rate. The diagonal version of the proposed algorithm

(PBD C), on the other hand, converges at a substantially approaches adopted for implementing boundary condi-
tions, as discussed in a previous section.faster rate, requiring 30% less CPU units to achieve conver-

gence. For a uniform grid case one would expect that both Implementing the various smoothing operators in
conjunction with a three-level, full-coarsening, V-cyclethe block and diagonal operators developed herein (PBB

and PBD, respectively), should converge at more or less multigrid procedure has a dramatic effect on the perfor-
mance of all three methods as shown in Fig. 7. All methodsthe same rate—since the grid metrics are constant and,

thus, the spatial linearizations involved in deriving PBD converge at significantly faster rates, as compared to their
single-grid versions, although the general trends regardingdo not introduce any error—when convergence history is

plotted in terms of number of time steps. Figure 6 does their relative performance are similar to those observed
in Fig. 6. Namely, the difference in CPU time requiredconfirm this observation, as the difference between the

PBB and PBD convergence rates is approximately equal for convergence between PPB and PPD is approximately
25%—indicating that the two methods converge at similarto the difference between the CPU time per time step

required by each algorithm—that is, when plotted in terms rates in terms of number of multigrid cycles—and the PPD
operator requires approximately 40% less CPU units thanof number of time steps, without considering the computa-

tional overhead of each operator, both algorithms con- the IRS operator to achieve convergence. For this case,
however, the pressure-based block algorithm (PPB) con-verge at nearly identical rates. Figure 6 also confirms

the stability analysis results for the uniform grid case verges about 20% faster than IRS. An important observa-
tion which follows from Figs. 6 and 7 is that the relative(AR 5 1) which, as discussed above, indicate that the

proposed smoothing operator can damp very effectively efficiency of the pressure-based operators increases when
implemented with multigrid acceleration. This trend is con-almost the entire range of error frequencies (see Fig. 1).

Finally, we should point out that the reasons for the oscilla- sistent with the stability results shown in Figs. 1 and 2,
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FIG. 3. Linear stability analysis (Ccntral differencing; aspect ratio AR 5 1000; Re 5 105). Pressure-based smoothing (CFL 5 2.5, «x 5 «y 5

«z 5 0.7, « 5 0.06). Standard smoothing (CFL 5 1.5, «x 5 «y 5 «z 5 0.35, « 5 0.06).

which clearly suggest that the pressure-based operator errors since, as seen in Fig. 8, both diagonal operators
converge, in terms of CPU units, somewhat faster thanshould be a powerful multigrid smoother due to its pro-

found effectiveness in damping high frequency errors. their block counterparts. Another interesting trend re-
vealed by these comparisons is with regard to the effectThe effect of pressure-based smoothing is even more

dramatic on large aspect ratio meshes. Figure 8 compares of spatial discretization on the efficiency of the multigrid
procedure. In general, the upwind algorithms are seen tothe convergence histories of various smoothing operators

(IRS C, IRS U, PPB C, PPB C, PPD C, and PPD U) be more efficient than their central counterparts (see also
[6]). This trend, however, cannot be readily explained byfor case 1b. All calculations shown in this figure have been

carried out using a three-level, full-coarsening, V-cycle the linear stability analysis results presented above which,
in fact, indicate that the opposite should be true. One couldmultigrid procedure. Regardless of the spatial discretiza-

tion scheme, the proposed operators yield substantial attribute this discrepancy between calculations and Von
Neumann analysis to the limitations of the latter whichsavings in the CPU time required for convergence. More

specifically, PPD C and PPD U require approximately does not account for non-linearities and the influence of
boundary conditions. This not withstanding, the compari-54% and 58% less work to achieve convergence as com-

pared to IRS C and IRS U, respectively. Yet another very sons shown in Fig. 8 do confirm the stability results insofar
as the relative performance of the various algorithms onencouraging trend is the fact that both block and diagonal

pressure-based algorithms converge at nearly the same large aspect ratio meshes is concerned.
The effect of grid aspect ratio on efficiency is furtherrates. This implies that in terms of number of multigrid

cycles required for convergence, the block operators con- underscored by the convergence histories shown in Fig. 9
(case 1b). This figure compares the performance of IRS Cverge faster. This is to be expected since the spatial linear-

izations involved in deriving PPD introduce significant er- and PPD C implemented in conjunction with both full-
(IRS C fc and PPD C fc) and semi-coarseningrors on nonuniform meshes. The efficiency of the diagonal

operator, however, is sufficient to compensate for these (IRS C sc and PPD C sc) multigrid procedures—coarse
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FIG. 4. Linear stability analysis (second-order upwind; aspect ratio AR 5 1000; Re 5 105). Pressure-based smoothing (CFL 5 5.0, «x 5 «y 5

«z 5 0.1). Standard smoothing (CFL 5 1.5, «x 5 «y 5 «z 5 0.7).

grids are constructed by coarsening the fine mesh along all which indicate that pressure-based smoothing enhances
damping of the high frequency errors on large aspect ratiothree or only the lateral and transverse spatial directions,

respectively. For the curved duct test case considered meshes. It is important to emphasize that this is a very
encouraging feature of the proposed method since semi-herein (case 1a), where the grid spacing in the streamwise

direction is uniform, full-coarsening would tend to preserve coarsening should be expected to work well only on meshes
where the distribution of grid nodes along one spatial direc-and/or increase the fine mesh aspect ratios, while semi-

coarsening would have the opposite effect. For that reason, tion is more or less uniform. This is obviously very difficult
to achieve in general three-dimensional geometries of prac-semi-coarsening is known to enhance the performance of

multigrid methods [6, 7] for duct geometries. This trend is tical interest. For such cases semi-coarsening may not have
the same favorable impact as for the curved duct case onalso demonstrated in Fig. 9. The IRS C operator with

semi-coarsening converges approximately 35% faster as the efficiency of the standard IRS operator and the benefits
from adopting the proposed pressure-based smoothingcompared to its full-coarsening counterpart while the cor-

responding acceleration for the PPD C operator is only may be even greater. Obviously these observations are
only speculations based on the results of linear stability20%—regarding the relative efficiency of the two opera-

tors, PPD converges 45% and 57% faster than IRS for analysis and the present calculations with curved duct ge-
ometries. Further work is required to test the efficiency ofsemi- and full-coarsening, respectively. The relatively

smaller effect that semi-coarsening has on the efficiency the proposed method when applied to calculate real-life
three-dimensional geometries.of the pressure-based algorithm indicates that the proposed

operator is less sensitive to and more effective in dealing The combined effect of grid stretching and skewness on
the performance of the various smoothing operators iswith large aspect-ratio meshes, as compared to the stan-

dard IRS operator. This trend is consistent with the pre- shown in Fig. 10, which compares the convergence histories
of IRS C, IRS U, PPD C, and PPD U for case 2. Theseviously discussed results of the linear stability analysis
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results were obtained using a three-grid level, V-cycle algo-
rithm with full-coarsening. It is seen that, regardless of
the spatial discretization scheme, the proposed smoothing
operator yields substantial efficiency gains, although its
performance does not appear to be as impressive as for
the curved duct case. After a very steep initial reduction
of the residual by approximately 4.5 orders of magnitude,
the convergence rates of both the PPD U and PPD C
slow down somewhat and the residual curves exhibit con-
sistent high frequency oscillations. Examination of the
evolution, with time steps, of the computed solutions, how-
ever, indicates that the proposed pressure-based operator
yields converged to plotting scale solutions in less than
400 CPU units, while the IRS-based algorithm is still con-
verging, even after 1000 CPU units. This is shown in
Fig. 11 which depicts the ‘‘time’’ evolution of pressure
coefficient profiles plotted along the inner and outer walls
of the pipe at the plane of symmetry for the PPD U and
IRS U algorithms—similar results are obtained for the
central-differencing versions of the two operators. There-
fore, even for the highly skewed mesh employed to discre-
tize the pipe bend (case 2) the proposed algorithm im-

FIG. 6. Single-grid convergence histories for Case 1a (central-differ-
encing): IRS: implicit residual smoothing, Eq. (13); PBB: pressure-based
block operator, Eq. (18); PBD: pressure-based diagonal operator,
Eq. (20).

proves the convergence rate of the standard IRS method
by more than 50%.

SUMMARY AND CONCLUSIONS

A pressure-based residual smoothing operator for ex-
plicit, multistage, artificial compressibility methods was de-
rived by incorporating a temporal discretization scheme
common among pressure-Poisson methods into pseudo-
compressible formulations. A similarity transformation
was employed to derive a computationally efficient diago-
nal pressure-based operator which was implemented in
a four-stage Runge–Kutta algorithm enhanced with
multigrid acceleration. Both central and upwind differenc-
ing formulations were developed and investigated.

Vector stability analysis for the coupled three-dimen-
sional Navier–Stokes equations indicates that the pro-
posed pressure-based residual smoothing operator sub-
stantially enhances the damping of high-frequency errors
on large aspect ratio meshes and can, thus, be very effective

FIG. 5. Plane-of-symmetry and cross-sectional views of computa-
in conjunction with multigrid acceleration. This was con-tional mesh: (a) mesh at the symmetry plane; (b) square cross-section
firmed by numerical experiments for laminar flow through(uniform mesh); (c) square cross-section (stretched mesh); (d) circular

cross section. strongly curved ducts and pipes using both uniform and
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highly stretched, as well as orthogonal and highly skewed,
meshes. Depending on the computational mesh, the pro-
posed approach requires between 30% to 60% less work
for achieving convergence, as compared to the standard
residual smoothing operator and is significantly less sensi-
tive to mesh aspect ratio. Furthermore, it is simple to
implement and can be readily incorporated in existing
multistage codes which utilize the constant-coefficient im-
plicit residual smoothing. It is, therefore, a promising tool
for accelerating convergence in calculations of complex,
three-dimensional flows of engineering interest. The pro-
posed approach can be extended to unsteady flows by
combining it with dual time-stepping procedures.

APPENDIX

In this appendix we present the governing equations and
the proposed pressure-based residual smoothing operator
in three-dimensional curvilinear coordinates.

Governing Equations (repeated indices imply sum-
mation),

FIG. 8. Multigrid convergence histories for Case 1b (central (xxx-C)
G

­Q
­t

1 J
­

­j j (F j 2 F j
V ) 5 0, (A.1) versus upwind (xxx-U) differencing; full coarsening): IRS: implicit resid-

ual smoothing, Eq. (13); PBB: pressure-based block operator, Eq. (18);
PBD: pressure-based diagonal operator, Eq. (20).

where

Q 5 [p, u1 , u2 , u3 ]T

F j 5
1
J

[U j, u1U j 1 pj j
x1

, u2U j 1 pj j
x2

, u3U j 1 pj j
x3

]T (A.2)

F j
V 5

1
J

1
ReF0, gmj ­u1

­j m , g mj ­u2

­j m , g mj ­u3

­j mGT

.

In the above equations, p is the static pressure, ui are
the Cartesian velocity components, xi are the Cartesian
coordinates, J is the Jacobian of the geometric trans-
formation, j i

xj
are the metrics of the geometric transforma-

tion, U j are the contravariant velocity components (U j 5
ui j

i
xj

), and g ij are the components of the contravariant
metric tensor (g ij 5 j i

xk
j j

xk
).

The linear part, F j
L, of the convective flux vector F j,

necessary for constructing the pressure-based operators,
reads in curvilinear coordinates as

F j
L 5

1
J

[U j, pj j
x1

, pj j
x2

, pj j
x3

]T. (A.3)
FIG. 7. Multigrid convergence histories for Case 1a (central-differ-

encing (xxx-C); full-coarsening): IRS: implicit residual smoothing,
THE PROPOSED ALGORITHM. (No summation over re-Eq. (13); PBB: pressure-based block operator, Eq. (18); PBD: pressure-

based diagonal operator, Eq. (20). peated indices).
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(i) Block operator

IB( ) 5 Ij1

B Ij2

B Ij3

B, (A.4)

where

Ij j

B( ) 5FI 1 am DtS ­

­j j A
j 2 «j jr(Aj )I

­2

­(j j)2DG ( ) (A.5)

Aj 5
­F j

L

­Q
51

0 j j
x1

j j
x2

j j
x3

j j
x1

0 0 0

j j
x2

0 0 0

j j
x3

0 0 0

2 (A.6)

r(Aj ) 5 Ïg jj. (A.7)

(ii) Diagonal operator

ID( ) 5 M1I
j1

D M21
1 M2Ij2

D M21
2 M3Ij3

D M21
3 , (A.8)

FIG. 10. Multigrid convergence histories for Case 2 (central (xxx-C)
where versus upwind (xxx-U) differencing; full coarsening): IRS: implicit resid-

ual smoothing, Eq. (13); PBD: pressure-based diagonal operator, Eq. (20).

Ij
j

D( ) 5FI 1 am DtS ­

­j j L
j 2 «j

jr(Aj)I
­2

­(jj)2DG ( ) (A.9)

Lj 5 diag(0, 0, Ïg jj, 2Ïg jj ) (A.10)
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s j Ïg jj

j j
x1

Ï2
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2 j j

x3
)2 . (A.11)

Finally, the following matrices are necessary for con-
structing upwind pressure-based operators:

A1
j 5

1
21

Ïg jj j j
x1

j j
x2

j j
x3

j j
x1

(j j
x1

)2/Ïg jj j j
x1

j j
x2

/Ïg jj j j
x1

j j
x3

/Ïg jj

j j
x2

j j
x1

j j
x2

/Ïg jj (j j
x2

)2/Ïg jj j j
x2

j j
x3

/Ïg jj

j j
x3

j j
x1

j j
x3

/Ïg jj j j
x2

j j
x3

/Ïg jj (j j
x3

)2/Ïg jj

2FIG. 9. Effect of grid coarsening strategies on multigrid performance
(Case 1b; central differencing (xxx-C); full (fc) versus semi-coarsening
(sc) strategies): IRS: implicit residual smoothing, Eq. (13); PBD: pressure-
based diagonal operator, Eq. (20).
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FIG. 11. Convergence history of pressure coefficient along the inner and outer walls of the pipe bend on the plane of symmetry (Case 2; upwind
differencing; full-coarsening): (a) pressure-based residual smoothing, Eq. (20); (b) standard residual smoothing, Eq. (13).
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